

Summary

LG type venturi standard flow element has a long history and it is a widely used flow measuring instrument, with high accuracy, stable performance, low pressure loss (generally between 5% to 20% of the differential pressure value), easy to maintain, especially in the energy-saving work condition, it has the advantages of accurate measurement and reduced energy consumption, and has broad prospects in use.

Operating Principle

In the pipeline filled with single-phase continuous fluid, install a flow element (such as a venturi). When the fluid passes through the orifice of the flow element, the vapor forms a local contraction, the flow velocity increases, the kinetic energy increases, and the static pressure decreases. There is a static pressure difference between the front and back of the flow element, that is, $\Delta P = P1-P2$. If the area of the orifice is F, the mass flow of the fluid is qm, the volume flow is qv, and the density is ρ , according to the principle of flow continuity and Bernoulli equation can derive the relationship between pressure difference and fluid flow:

$$q_m = \alpha F \sqrt{\Delta p \rho}$$
 or $q_v = \alpha F \sqrt{\Delta p / \rho}$

In the formula, α is the flow coefficient. It can be seen from the above relationship that if the orifice area and fluid density are constant, the flow rate is proportional to the square root of the pressure difference, that is, as long as the pressure difference is measured, the flow rate can be calculated. The flow element measures the fluid flow rate based on this principle.

Model Selection Table

Table 1 Flow Element Code and Meaning

Code	Meaning	Caliber	
J	Classic Venturi Tube with Machined Shrinkage Section	DN50-DN250	
Н	Classic Venturi Tube for Shrinking Section of Thick Welded Iron Plate	More than DN350	

Table 2 Tap Method and Meaning

Code	Meaning
Т	Tap Equalizing Ring
Z	Drilling Tap

Table 3 Nominal Diameter Code and Meaning

Co	de	1	2/11	3/12	4/13	5/14	6/15	7/16	8/17	9/18	10/19
	mm	10	15	20	25	32	40	50	65	80	100
DN	in		1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4
Code 20/51 21/52 22/53 23/54 24/55 25/56 26/57 27/58 28/59					30/61						
DN	mm	125	150	200	250	300	350	400	450	500	600
DN	in	5	6	8	10	12	14	16	18	20	24
Co	de	32/63	34/65	36/67	38/69	40/71	42/73				
	mm	700	800	900	1000	1100	1200				
DN	in	28	32	36	40	44	48				

Table 4 Nominal Pressure Code and Meaning

Co	de	3	4	5	6	7	8	9	10	11	12
PN	MPa	1.6	2.0	2.5	4.0	5.0	6.3	10.0	11.0	15.0	16.0
PIN	Class		150			300			600	900	
Code		13	14	15/16							
PN	MPa	25.0	26.0	42.0							
PIN	Class		1500	2500							

Table 5 Straight Pipe Section Code and Meaning

Code	A B C		С	D	E	F	
Meaning	Flow Element	Flow Element, Mounting Flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Upstream and downstream connection flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Upstream connection flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Downstream connection flange	Welding Structure

2. Executive Standard

2.1 Flow Element Executive Standard

Code	Meaning	Standard Code		
J	Classic Venturi Tube for Machined Shrinkage Section	GB/T2624—2006 (ISO5167—1—2003)		
Н	Classic Venturi Tube for Shrinking Section of Thick Welded Iron Plate	GB/T2624—2006 (ISO5167—1—2003)		

For example, DN50 CL300 flange connection tap equalizing ring venturi tube model is LGJT-7-7A

2.2 Flange and Gasket Executive Standard

Flange and gasket standards can be selected from HG/T20592 \sim 20614-09 (European system) or HG/T20615 \sim 20635-09 (American system) or other standards.

Order Requirements

1. When ordering flow element, please fill in the flow element specification table

(Refer to the table below)

				Project No.
				Flow Element Order Parameters Table Document No.
				Page No.
		Data		Calculation
	Medium Name			Flow Element Type
	Proces	ss Temperature	C°	Tap Method
Ор	Opera	tion Pressure	MPa	Instrument Scale
era				Instrument Differential Pressure kPa
tin		Liquid kg/h	Max	Limitation of Min Flow
g		Vapor kg/h	Normal	Reynolds number(normal flow) Re
Со		Gas Nm3/h	Min	Area of Expansion Correction Coefficient Fa
ndi	Flow			Expansion Coefficient ϵ
tio				Flow Coefficient α
ns				Uncertainty %
				Permanent Pressure Loss Pa
	Opera	ting Density	kg/m³	Diameter Ratio βt
	Dynamic Viscosity mPa·s			Flow Element Hole Diameter or Round Height
	Dynan	-		mm
	Kinem	atic Viscosity r	nm²/s	1/4 Arc Radius Or Eccentricity mm
	Relativ	/e Humidity (φ)	%	
	Comp	ression Factor (Z)	Flow Element Standard
	Isentro	ppic Index (cp/cv))	

ADD/ No.10 Huanghai Street, Zhenxing District, Dandong, Liaoning, China P.C. / 118008
E-MAIL / top@ddtop.com SERVICE / +86-415-6227346

	Allowable Pressure Loss Pa	Specification				
	Nominal Diameter(DN)	Model				
	Pipeline No.	Nominal Diameter(DN)				
Pipe	Outer Diameter/Inner Diameter	Nominal F	Pressure(PN) MPa			
0e	Material	Flange Sta	andard			
		Flange Inr	ner Diameter mm			
		Structure	Length mm			
		Tap Dimension mm				
		Tap Position				
			Flow Element			
			Flange			
		Material	Bolt			
			Nut			
			Gasket			
Notes		·	· · · ·			

2. Our company can provide users with the following services:

2.1 Provide a complete set of the above-mentioned various specifications of flow element.

2.2 Provide flow element calculation for users, including:

1) Knowing the aperture diameter d20 of the flow element and the meter scale flow rate, under the new working conditions, find the new upper limit of the differential pressure Hmax of instrument;

2) Knowing the aperture diameter d20 of the flow element, the upper limit Hmax of the instrument differential pressure and the scale flow rate of the original design instrument, under the new working conditions, find the new scale flow rate of instrument.

2.3 According to user requirements or drawings to manufacture the flow element.